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jABSTRACT

-W consider a multicomponent system in which the failure rate of a given
component at any time depends on the set of working components at that time.
Sufficient conditions are presented under which such a system has a new
better then used life distribution. When the failed components are allowed
to be repaired, present conditions under which the resulting process is
time reversible.
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A MODEL IN WHICH COMPONENT FAILURE RATES DEPEND ON THE WORKING SET

by

Sheldon M. Ross

1. INTRODUCTION

Consider an n component system having some arbitrary monotone coherent

structure (see Barlow and Proschan 1] for suitable definitions). We sup-

pose that each component is initially on and stays on for a random time at

which it fails. The problem of interest is to characterize the distribution

of the time until the system fails. Whereas this problem is usually con-

sidered under the assumption that the component lives are independent we

are concerned with the following model which allows for dependencies in

these life distributions: We suppose a Narkovian model in which the failure

rate of a given component at any time is allowed to depend on the set of

working components at that time. Specificallywe suppose that if at some

time W , W C {1,2, ... , n} , represents the set of working components then

for i e W the instantaneous failure rate for component i is A(I ()

We start by giving a sufficient condition for the distribution of system

life to be NBU where we say that the nonnegative random variable T has a

NBU (new better than used) distribution if

P{T > s + t I T > s} <P(T > t) for all s,t > .

In words, the above states that the probability a used item survives an

additional t time units is less than the corresponding probability of a

new item. We are now ready to show that if the failure rate of a component

increases as the set of working components decrease then system life is

NBU.

MDII.•
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Proposition 1:

If for all sets W 1 CW2

Xi(W1 ) X A(W2 ) , i E W£

then the time until system failure is NBU.

Proof:

For any set of components W, let Tw  denote the time until the

system fails when W consists of the set of components that are initially

working. We will start by showing that if Z C W then TZ < TW . The
at

proof of this will be by induction on k - IZI + IWI , where lUI equals

the number of elements in U . It is obvious for k - 1 (for in this

case Z-* and so TZ = 0), and so assume it whenever IZI + 1W1 - k

Now suppose that Z C W and IZI + IW - k + 1 . For i e Z ,define

Xi  to be an exponential random variable with rate Xi(Z) . Also for

j e W - Z define Y to be exponential with rate XM(W) . In addition,

suppose that all the Xi  and Y so defined are independent. Now let

X - inmin nX i ,min Y

There are two cases we need consider:

Case 1: X- Xi  for i c Z

I i

In hi caewe anse
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Tz=X+ T*
z - {z-il

T* (w)

X + with probability

Tv - iiz
X i(W)

X + Ti with probability 1 - (Z)

where T* is meant to be a random variable independent of all theU X
and Y and with the same distribution of TU Since (Z - i} C {W - i} C

jU
W , it follows by the induction hypothesis that in this case TZ Tw

at

Case 2: X - Y for some j W- Z

In this case,we set

Tz a X + T*
z z

- X + T .

As Z C {W - J} , it again follows by the induction hypothesis that

Tz I TW
at

lence, for Z C W , Tz 81 TW " Now suppose all components are initially
at

on and that the system is still working at time a . Now no matter what the

set of working components is at time a , it follows from the above that the

remaining life is stochastically smaller that T{ 1 2  n which proves

the proposition. I
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Reparks:

(i) Proposition 1 need not be true without the monotonicity assumption

on Xi(W) For a counterexample, consider a parallel system with

n -2 and

X1 (,2) - 2 (1,2) - 1

1 A2()-l.

Suppose the system is working at t . Nov as t becomes larger at

some point the system's failure rate starts to decrease because it

becomes more and more likely that only component 1 is working (the

only other possibility of any probability being that only 2 is

working). Hence, system life will not be NBU.

(ii) As the failure rate of a working component depends on the set of

failed components, the question arises as to whether Proposition 1

would remain true if this failure rate were allowed to depend on

the order in which the components have failed. That is, suppose

that i(i i 2 , ..... , i ii i# , j - 1, ... , k , is the failure

rate of component i when components il, .... i have failed and

n that order. Would system life be NBU if i(1 , i)

i(i ... , ,i1 ) ? The answer is no for consider the following

example for a parallel system:

n-3 , 1 - 2 -10O , X3 -1

X3 (1,2) - 10 , X3(2,1) - 1

i i IIII&
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where i is the initial failure rate of component i Now after

a short time both 1 and 2 would be failed and so the remaining life

will be a mixture of an exponential with rate 10 (if 1 failed before

2) or an exponential with rate 1 (if 2 failed before 1). But a

mixture of exponentials with unequal rates has a decreasing failure

rate and so system life could not be NBU.

(iii) When n - 2 , the joint distribution of the lifetimes of the two

components is called the Freund Distribution (see [2]). It can be

shown in this case (see [6]) that the time of system failure has the

stronger than NBU property of being an increasing failure rate on

average (IFRA) distribution. We do not know if this result can be

extended to the case n > 2.

(iv) An interesting special case obtains when we take

ai
XtIN) Xi C , i C W

JEW

where ai are given nonnegative numbers. Such a situation would

arise from the following weighted load sharing model: Suppose that

an n component system is subject to a constant load pressure C

which must be allocated among the working components. Suppose also

that the allocation is determined by a set of weights a1 , ... , an

such that if at any time W is the set of working components then

the load taken on by component i , I c W , is C aI/ I aj . If

Jew

in addition we suppose that the failure rate of component i is

proportional to (with proportionality constant A the load it is



assuming then the above obtains. For this madelit can be shown

(aee [51) that for a parallel system the t~ime until system failure

(that is the time until all components have failed) is an increasing

failure rate (InR) random variable.

I7
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2. LAPLACE TRANSFORM OF SYSTEM LIFE

For a given structure one can, upon conditioning on the order in which

the components fail, obtain an expression for the Laplace transform of T

the time of system failure. For instance, suppose a parallel system which

fails when all components fail. Then letting

Xi(W) - Xi(Wc) , where Wc  complement of W

we have

e l P(i ...' i) nn~-~ )E[ Pi , ..., an  + J l 1 )

where

P is the set of all n! permutations of 1,2, ... , n

and

2i i(i1 'k(il, 1 ..., k I
:1,2 ) in ) .. -n"' "l n..-."' 'k-d

J-i j J-2 j J-k j

is the probability that components fail in that order.

The above can easily be understood by noting that given that the

components fail in order i1 ,1 2 , ... , i n  the time between successive

failure components are independent exponentials with rates

jl 2

J1 i'U2 '('
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3. SIMULATING THE PROCESS

Let Ti  denote the failure time of component i . The random vector

(T1, ... , Tn ) can most easily be simulated as follows: Let X,

i - 1, .. , n be independent exponentials with respective rates Xi

i=i,..., n . Now order the Xi and let i1 ,i2, ... in be such that

X < X2 <...<X i n

Now set

T -X

n

T . +(x x) - I

j12 X'j

nk

Ti + ( , k 2, ..., n
J-k i j ""p k-1)

The above follows by first noting that given ii , .... in it follows from

the lack of memory property of the exponential that

n n n

X it eon ls J12 rate i. The dniat tern1 j11 1±(± 1l ** x -xi)j-2

are independent exponentials with rates 1. The denominator term
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I X (iI, , ik_-) in the definition of T thus gives the exponential
J=k ia

its appropriate rate.

Remark:

When n - 2 and Xi 1 - i) , j # i , the above expresses TVT2  as an

increasing homogeneous function of X . This was noted and used in [6]

to show that the Ti are associated (follows from the fact they are in-

creasing functions of the independent random variables Xi  (see [ll for a

proof of this)) and also that system life is IFRA (follows from the fact that

the function is not only increasing but also homogeneous--see [4] for a proof

of this). Unfortunately, when n > 2 , these functions are no longer in-

creasing.
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4. THE MODEL WITH REPAIR

Let us suppose that failed components are repaired. Specifically,

suppose that the repair rate of component i when then set of working

components is W , i j W , is v i(W) . This gives rise to a continuous

time Markov chain with 2n  states--all possible subsets W C {1,2, ..., n)

To solve for the steady state probabilities is in general a difficult task

but it simplifies in the following special case:

Special case:

For functions f(k) , g(k) , k - 0,1, ... , n and positive constants

x k ' Ok ' k - 1, ..., n,

x (W) - A f(IW ) , j W U

Si((W)- Ii(w) , ± W

Proposition 2:

Under the conditions of the above special case the stationary prob-

abilities of the set of working components is given as follows: For

w - (i1 , ..., iY} '

Pi ... ) 1 P2 Pk a(k - 1) ... z(o) ()x1' kx i " f(k) ... f(l)

where P(#) is the stationary probability that all components are failed

and can be obtained by suming the above over all W and equating to 1.

In addition the chain, in steady state, is time reversible.

.9
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Proof:

To verify the above, all we need check is that the proposed stationary

probabilities satisfy the time reversibility equations. That is we need

check that, for the proposed stationary probabilities,

P({i 1 , ... , ik}),X f(k) - P({i 2, ... , i})ui g(k - 1)

But this is imediate and so the result follows. 11

oI
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